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Finite chain rings

Definition
An associative ring with identity (1 6= 0) is called a left (right)
chain ring if the lattice of its left (right) ideals forms a chain.

R > Rθ > . . . > Rθm = (0)

Fact
If R is a finite chain ring, then every proper left(right) ideal of R
has the form Rθi = θiR, for some positive integer i. If
θ ∈ rad R \ (rad R)2, then rad R = Rθ.

Example

Z4 = {0,1,2,3} > rad Z4 = {0,2} > (0)
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Chain rings of nilpotency index 2

R : R > rad R > (0), R/ rad R ∼= Fq, |R| = q2

Fact
If q = pr there exist r + 1 isomorphism classes of such rings:

σ-dual numbers over Fq, ∀σ ∈ Aut Fq : Rσ = Fq ⊕ Fqt ;
addition – (x0 + x1t) + (y0 + y1t) = (x0 + y0) + (x1 + y1)t ,
multiplication – (x0 + x1t)(y0 + y1t) = x0y0 + (x0y1 + x1yσ

0 )t ;
the Galois ring GR(q2,p2) = Zp2 [X ]/ (f (X )), where f (X ) is
monic polynomial of degree r , irreducible mod p.
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Projective Hjelmslev Plane PHG(R3
R)

M = R3
R; M∗ := M \Mθ;

P = {xR | x ∈ M∗};
L = {xR + yR | x , y ∈ M∗, x , y linearly independent};
I ⊆ P × L – incidence relation;
_̂ - neighbour relation:

(N1) X _̂Y if ∃s, t ∈ L, s 6= t : XIs,YIs,XIt ,YIt ;
(N2) s _̂ t if ∃X ,Y ∈ P,X 6= Y : XIs,YIs,XIt ,YIt .

Definition
The incidence structure Π = (P,L, I) with neighbour relation
_̂ is called the (right) projective Hjelmslev plane over the

chain ring R and we denote it by PHG(R3
R).
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Combinatorics in PHG(R3
R)

|P| = |L| = q2(q2 + q + 1)

Every point (line) is incident with q(q + 1) lines (points).
Every point (line) has q2 neighbours;
Given a point P and a line ` containing P there exist q
points on ` that are neighbours to P and, dually, exactly q
lines through P that are neighbours to `.

Example (R = Z4)
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The structure of PHG(R3
R)

[P] – class of all neighbours to P;
[`] – class of all neighbours to `;
P ′ – the set of all neighbour classes of points;
L′ – the set of all neighbour classes of lines.
I ′ ⊆ P ′ × L′ - incidence relation, defined by
I ′ : [P]I ′[`]⇔ ∃P0 ∈ [P], ∃`0 ∈ [`],P0I`0.

Theorem
The incidence structure (P ′,L′, I ′) is isomorphic to the
projective plane PG(2,q).
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The structure of AHG(R2
R)

AHG(R2
R)

Points {(x , y) | x , y ∈ R}
Lines {Y = aX + b | a,b ∈ R}

{cY = X + b | c ∈ rad R,b ∈ R}

Example (R = Z4)
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Slopes of lines in AHG(R2
R)

Fact
Let Γ = {γ0 = 0, γ1 = 1, γ2, . . . , γq−1}, γi 6≡ γj mod rad R.
Then each element r of the chain ring R can be represented
uniquely in the form r = a + θb, where θ ∈ rad R \{0} and
a,b ∈ Γ.

Definition
A line of type
Y = aX + b has slope a
cY = X + b has slope∞j , where c = γi + θγj
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Definition

Definition
The pointset B ⊆ P is called a k-blocking set if

|B ∩ P| = k ,
|B ∩ `| ≥ 1 for any line ` ∈ L,
there exists a line `0 with |B ∩ `0| = 1.

Definition
The blocking set B is called irreducible if B \P is not a blocking
set for every point P ∈ B.
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Bounds of blocking sets in PHG(R3

R )

Theorem

Let R be a finite chain ring with |R| = q2, R/ rad R ∼= Fq. The
minimal size of a blocking set B in PHG(R3

R) is q(q + 1) and
then B is a line.

Theorem

There exists an irreducible blocking set in PHG(R3
R) of size

q2 + q + 1.

Example (R = Z9)
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Blocking Sets of Rédei type in PHG(R3
R)

Definition

Let T be a set of points in AHG(R2
R). We say that the infinite

point (a) is determined by T , if there exist different points
P,Q ∈ T , such that P,Q and (a) are collinear in PHG(R3

R).

Example (R = Z4, T = {(00), (02)})
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Blocking Sets of Rédei type in PHG(R3
R)

Theorem

Assume T is a set of q2 points in AHG(R2
R), no two of which

are neighbours. Denote by D the set of infinite points
determined by T . If |D| < q2 + q then B = T ∪ D is an
irreducible blocking set in PHG(R3

R).

Definition

A blocking set of size q2 + m in PHG(R3
R) is said to be of Rédei

type if it has an m-secant. Such a line is called a Rédei line.
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Construction of T
If f : R → R then T = {(x , f (x)) | x ∈ R}.

The directions determined by T

If P(x , f (x)) and Q(y , f (y)) are two different points in T , then
{P,Q} determine the following directions:
1) if x − y 6∈ rad R → point (a),

where a = (f (x)− f (y))(x − y)−1

2) if x − y ∈ rad R \{0} and f (x)− f (y) 6∈ rad R → point (∞i),
where (x − y)(f (x)− f (y))−1 = θγi , γi ∈ Γ.

3) if x − y = θα ∈ rad R \{0} and f (x)− f (y) = θβ ∈ rad R,

a) β 6= 0→ class of all points (c) with c ∈ αβ−1 + rad R;
b) β = 0→ class of all infinite points (∞i ) with i = 0, . . . ,q − 1.
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Example

Let f :

{
R → R

a + θb → b + θa
and consider the set of points

T = {(x , f (x)) | x ∈ R}
If R = Rσ = Fq ⊕ Fqt , for some σ ∈ Aut Fq,
then T determines q + 1 infinite points.
If R = GR(q2,p2),
then T determines q2 − q + 2 infinite points.
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