Blocking Sets of Rédei type in Projective Hjelmslev Planes

Ivan Landjev ${ }^{1}$ Stoyan Boev²

${ }^{1}$ Department of Informatics, New Bulgarian University and
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
${ }^{2}$ Department of Informatics, New Bulgarian University

June 16-22, 2008 / XI International Workshop on ACCT, Pamporovo

Outline

(1) Chain rings
(2) Projective Hjelmslev Planes over finite chain rings

- The structure of $\operatorname{PHG}\left(R_{R}^{3}\right)$
- The affine planes $\mathrm{AHG}\left(R_{R}^{2}\right)$
(3) Blocking sets in $\mathrm{PHG}\left(R_{R}^{3}\right)$
- Definition
- Bounds of blocking sets in $\operatorname{PHG}\left(R_{R}^{3}\right)$

4. Blocking Sets of Rédei type in $\mathrm{PHG}\left(R_{R}^{3}\right)$

- Definition
- Construction and examples

Finite chain rings

Definition

An associative ring with identity $(1 \neq 0)$ is called a left (right) chain ring if the lattice of its left (right) ideals forms a chain.

$$
R>R \theta>\ldots>R \theta^{m}=(0)
$$

Fact

If R is a finite chain ring, then every proper left(right) ideal of R has the form $R \theta^{i}=\theta^{i} R$, for some positive integer i. If $\theta \in \operatorname{rad} R \backslash(\operatorname{rad} R)^{2}$, then $\operatorname{rad} R=R \theta$.

Example

$$
\mathbb{Z}_{4}=\{0,1,2,3\}>\operatorname{rad} \mathbb{Z}_{4}=\{0,2\}>(0)
$$

Chain rings of nilpotency index 2

$$
R: R>\operatorname{rad} R>(0), R / \operatorname{rad} R \cong \mathbb{F}_{q},|R|=q^{2}
$$

Fact

If $q=p^{r}$ there exist $r+1$ isomorphism classes of such rings:

- σ-dual numbers over $\mathbb{F}_{q}, \forall \sigma \in \operatorname{Aut} \mathbb{F}_{q}: R_{\sigma}=\mathbb{F}_{q} \oplus \mathbb{F}_{q} t$; addition $-\left(x_{0}+x_{1} t\right)+\left(y_{0}+y_{1} t\right)=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right) t$, multiplication $-\left(x_{0}+x_{1} t\right)\left(y_{0}+y_{1} t\right)=x_{0} y_{0}+\left(x_{0} y_{1}+x_{1} y_{0}^{\sigma}\right) t$;
- the Galois ring $\operatorname{GR}\left(q^{2}, p^{2}\right)=\mathbb{Z}_{p^{2}}[X] /(f(X))$, where $f(X)$ is monic polynomial of degree r, irreducible $\bmod p$.

Projective Hjelmslev Plane PHG $\left(R_{R}^{3}\right)$

- $M=R_{R}^{3} ; M^{*}:=M \backslash M \theta$;
- $\mathcal{P}=\left\{x R \mid x \in M^{*}\right\}$;
- $\mathcal{L}=\left\{x R+y R \mid x, y \in M^{*}, x, y\right.$ linearly independent $\}$;
- $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$ - incidence relation;
- $○$ - neighbour relation:
(N1) $X \bigcirc Y$ if $\exists s, t \in \mathcal{L}, s \neq t: X \mathcal{I} s, Y \mathcal{I} s, X \mathcal{I} t, Y \mathcal{I} t ;$
(N2) $s \circ t$ if $\exists X, Y \in \mathcal{P}, X \neq Y: X \mathcal{I} s, Y \mathcal{I} s, X \mathcal{I} t, Y \mathcal{I} t$.

Definition

The incidence structure $\Pi=(\mathcal{P}, \mathcal{L}, \mathcal{I})$ with neighbour relation \bigcirc is called the (right) projective Hjelmslev plane over the chain ring R and we denote it by $\mathrm{PHG}\left(R_{R}^{3}\right)$.

Combinatorics in $\operatorname{PHG}\left(R_{R}^{3}\right)$

- $|\mathcal{P}|=|\mathcal{L}|=q^{2}\left(q^{2}+q+1\right)$
- Every point (line) is incident with $q(q+1)$ lines (points).
- Every point (line) has q^{2} neighbours;
- Given a point P and a line ℓ containing P there exist q points on ℓ that are neighbours to P and, dually, exactly q lines through P that are neighbours to ℓ.

Example ($R=\mathbb{Z}_{4}$)

The structure of $\mathrm{PHG}\left(R_{R}^{3}\right)$

- $[P]$ - class of all neighbours to P;
[ℓ] class of all neighbours to ℓ;
- \mathcal{P}^{\prime} - the set of all neighbour classes of points;
- \mathcal{L}^{\prime} - the set of all neighbour classes of lines.
- $\mathcal{I}^{\prime} \subseteq \mathcal{P}^{\prime} \times \mathcal{L}^{\prime}$ - incidence relation, defined by
$\mathcal{I}^{\prime}:[P] \mathcal{I}^{\prime}[\ell] \Leftrightarrow \exists P_{0} \in[P], \exists \ell_{0} \in[\ell], P_{0} \mathcal{I} \ell_{0}$.

Theorem

The incidence structure $\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}, \mathcal{I}^{\prime}\right)$ is isomorphic to the projective plane $\mathrm{PG}(2, q)$.

Chain rings
Projective Hjelmslev Planes over finite chain rings Blocking sets in $\mathrm{PHG}\left(R_{B}^{3}\right)$ Blocking Sets of Rédei type in $\mathrm{PHG}\left(R_{R}^{3}\right)$

The structure of $\mathrm{PHG}\left(R_{R}^{3}\right)$
The affine planes $\mathrm{AHG}\left(R_{R}^{2}\right)$

The structure of $\operatorname{PHG}\left(R_{R}^{3}\right)$

Example ($R=\mathbb{Z}_{4}$)

Projective Hjelmslev Planes over finite chain rings Blocking sets in $\mathrm{PHG}\left(R_{B}^{3}\right)$
Blocking Sets of Rédei type in $\operatorname{PHG}\left(R_{R}^{3}\right)$

The structure of $\mathrm{AHG}\left(R_{R}^{2}\right)$

$\mathrm{AHG}\left(R_{R}^{2}\right)$

```
Points \(\{(x, y) \mid x, y \in R\}\)
Lines \(\{Y=a X+b \mid a, b \in R\}\)
    \(\{c Y=X+b \mid c \in \operatorname{rad} R, b \in R\}\)
```

Example $\left(R=\mathbb{Z}_{4}\right)$

Slopes of lines in $\mathrm{AHG}\left(R_{R}^{2}\right)$

Fact

Let $\Gamma=\left\{\gamma_{0}=0, \gamma_{1}=1, \gamma_{2}, \ldots, \gamma_{q-1}\right\}, \gamma_{i} \not \equiv \gamma_{j} \bmod \operatorname{rad} R$. Then each element r of the chain ring R can be represented uniquely in the form $r=a+\theta b$, where $\theta \in \operatorname{rad} R \backslash\{0\}$ and $a, b \in \Gamma$.

Definition

A line of type
$Y=a X+b$ has slope a
$c Y=X+b$ has slope ∞_{j}, where $c=\gamma_{i}+\theta \gamma_{j}$

Chain rings
Projective Hjelmslev Planes over finite chain rings Blocking sets in $\mathrm{PHG}\left(R_{B}^{3}\right)$ Blocking Sets of Rédei type in $\operatorname{PHG}\left(R_{R}^{3}\right)$

Slopes in AHG $\left(R_{R}^{2}\right)$

Example ($R=\mathbb{Z}_{4}$)

Definition

Definition

The pointset $\mathfrak{B} \subseteq \mathcal{P}$ is called a k-blocking set if

- $|\mathfrak{B} \cap \mathcal{P}|=k$,
- $|\mathfrak{B} \cap \ell| \geq 1$ for any line $\ell \in \mathcal{L}$,
- there exists a line ℓ_{0} with $\left|\mathfrak{B} \cap \ell_{0}\right|=1$.

Definition

The blocking set \mathfrak{B} is called irreducible if $\mathfrak{B} \backslash P$ is not a blocking set for every point $P \in \mathfrak{B}$.

Theorem

Let R be a finite chain ring with $|R|=q^{2}, R / \operatorname{rad} R \cong \mathbb{F}_{q}$. The minimal size of a blocking set \mathfrak{B} in $\operatorname{PHG}\left(R_{R}^{3}\right)$ is $q(q+1)$ and then \mathfrak{B} is a line.

Theorem

There exists an irreducible blocking set in $\mathrm{PHG}\left(R_{R}^{3}\right)$ of size $q^{2}+q+1$.

Example ($R=\mathbb{Z}_{9}$)

Blocking Sets of Rédei type in $\operatorname{PHG}\left(R_{R}^{3}\right)$

Definition

Let T be a set of points in $\operatorname{AHG}\left(R_{R}^{2}\right)$. We say that the infinite point (a) is determined by T, if there exist different points $P, Q \in T$, such that P, Q and (a) are collinear in $\operatorname{PHG}\left(R_{R}^{3}\right)$.

Example $\left(R=\mathbb{Z}_{4}, T=\{(00),(02)\}\right)$

Blocking Sets of Rédei type in $\operatorname{PHG}\left(R_{R}^{3}\right)$

Theorem

Assume T is a set of q^{2} points in $\mathrm{AHG}\left(R_{R}^{2}\right)$, no two of which are neighbours. Denote by D the set of infinite points determined by T. If $|D|<q^{2}+q$ then $B=T \cup D$ is an irreducible blocking set in $\mathrm{PHG}\left(R_{R}^{3}\right)$.

Definition

A blocking set of size $q^{2}+m$ in $\operatorname{PHG}\left(R_{R}^{3}\right)$ is said to be of Rédei type if it has an m-secant. Such a line is called a Rédei line.

Construction of T

If $f: R \rightarrow R$ then $T=\{(x, f(x)) \mid x \in R\}$.

The directions determined by T

If $P(x, f(x))$ and $Q(y, f(y))$ are two different points in T, then $\{P, Q\}$ determine the following directions:

1) if $x-y \notin \operatorname{rad} R \rightarrow$ point (a),
where $a=(f(x)-f(y))(x-y)^{-1}$
2) if $x-y \in \operatorname{rad} R \backslash\{0\}$ and $f(x)-f(y) \notin \operatorname{rad} R \rightarrow \operatorname{point}\left(\infty_{i}\right)$, where $(x-y)(f(x)-f(y))^{-1}=\theta \gamma_{i}, \gamma_{i} \in \Gamma$.
3) if $x-y=\theta \alpha \in \operatorname{rad} R \backslash\{0\}$ and $f(x)-f(y)=\theta \beta \in \operatorname{rad} R$,
a) $\beta \neq 0 \rightarrow$ class of all points (c) with $c \in \alpha \beta^{-1}+\operatorname{rad} R$;
b) $\beta=0 \rightarrow$ class of all infinite points $\left(\infty_{i}\right)$ with $i=0, \ldots, q-1$.

Example

Let $f:\left\{\begin{array}{clc}R & \rightarrow & R \\ a+\theta b & \rightarrow & b+\theta a\end{array}\right.$ and consider the set of points
$T=\{(x, f(x)) \mid x \in R\}$

- If $R=R_{\sigma}=\mathbb{F}_{q} \oplus \mathbb{F}_{q} t$, for some $\sigma \in$ Aut \mathbb{F}_{q}, then T determines $q+1$ infinite points.
- If $R=\operatorname{GR}\left(q^{2}, p^{2}\right)$,
then T determines $q^{2}-q+2$ infinite points.

