Blocking Sets of Rédei type in Projective Hjelmslev Planes

Ivan Landjev¹ Stoyan Boev²

¹Department of Informatics, New Bulgarian University and Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

²Department of Informatics, New Bulgarian University

June 16–22, 2008 / XI International Workshop on ACCT, Pamporovo

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Outline

- Chain rings
- Projective Hjelmslev Planes over finite chain rings
 - The structure of $PHG(R_R^3)$
 - The affine planes $AHG(\hat{R}_R^2)$
- 3 Blocking sets in $PHG(R_R^3)$
 - Definition
 - Bounds of blocking sets in PHG(R³_R)
- Blocking Sets of Rédei type in PHG(R³_R)
 - Definition
 - Construction and examples

(同) くほり くほう

Finite chain rings

Definition

An associative ring with identity $(1 \neq 0)$ is called a left (right) chain ring if the lattice of its left (right) ideals forms a chain.

$$R > R\theta > \ldots > R\theta^m = (0)$$

Fact

If *R* is a finite chain ring, then every proper left(right) ideal of *R* has the form $R\theta^i = \theta^i R$, for some positive integer *i*. If $\theta \in \operatorname{rad} R \setminus (\operatorname{rad} R)^2$, then $\operatorname{rad} R = R\theta$.

Example

$$\mathbb{Z}_4 = \{0, 1, 2, 3\} > \text{rad}\,\mathbb{Z}_4 = \{0, 2\} > (0)$$

Chain rings of nilpotency index 2

$$R\colon R> \operatorname{rad} R>(0), \ R/\operatorname{rad} R\cong \mathbb{F}_q, \ |R|=q^2$$

Fact

If $q = p^r$ there exist r + 1 isomorphism classes of such rings:

- σ -dual numbers over \mathbb{F}_q , $\forall \sigma \in \operatorname{Aut} \mathbb{F}_q : R_{\sigma} = \mathbb{F}_q \oplus \mathbb{F}_q t$; addition $-(x_0 + x_1 t) + (y_0 + y_1 t) = (x_0 + y_0) + (x_1 + y_1)t$, multiplication $-(x_0 + x_1 t)(y_0 + y_1 t) = x_0y_0 + (x_0y_1 + x_1y_0^{\sigma})t$;
- the Galois ring GR(q², p²) = Z_{p²}[X]/(f(X)), where f(X) is monic polynomial of degree r, irreducible mod p.

ヘロト ヘ戸ト ヘヨト ヘヨト

Projective Hjelmslev Plane $PHG(R_B^3)$

•
$$M = R_B^3$$
; $M^* := M \setminus M\theta$;

•
$$\mathcal{P} = \{ x \mathbf{R} \mid x \in \mathbf{M}^* \};$$

- $\mathcal{L} = \{xR + yR \mid x, y \in M^*, x, y \text{ linearly independent}\};$
- $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$ incidence relation;
- neighbour relation:

(N1) $X \odot Y$ if $\exists s, t \in \mathcal{L}, s \neq t$: XIs, YIs, XIt, YIt; (N2) $s \odot t$ if $\exists X, Y \in \mathcal{P}, X \neq Y$: XIs, YIs, XIt, YIt.

Definition

The incidence structure $\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ with neighbour relation \bigcirc is called the (right) projective Hjelmslev plane over the chain ring *R* and we denote it by PHG(R_R^3).

Combinatorics in $PHG(R_R^3)$

- $|\mathcal{P}| = |\mathcal{L}| = q^2(q^2 + q + 1)$
- Every point (line) is incident with q(q + 1) lines (points).
- Every point (line) has q² neighbours;
- Given a point P and a line l containing P there exist q points on l that are neighbours to P and, dually, exactly q lines through P that are neighbours to l.

The structure of $PHG(R_R^3)$ The affine planes $AHG(R_R^2)$

The structure of $PHG(R_R^3)$

- [P] class of all neighbours to P;
 - $[\ell]$ class of all neighbours to ℓ ;
- \mathcal{P}' the set of all neighbour classes of points;
- \mathcal{L}' the set of all neighbour classes of lines.
- $\mathcal{I}' \subseteq \mathcal{P}' \times \mathcal{L}'$ incidence relation, defined by $\mathcal{I}': [P]\mathcal{I}'[\ell] \Leftrightarrow \exists P_0 \in [P], \exists \ell_0 \in [\ell], P_0\mathcal{I}\ell_0.$

Theorem

The incidence structure $(\mathcal{P}', \mathcal{L}', \mathcal{I}')$ is isomorphic to the projective plane PG(2, q).

・ロン ・ 同 と ・ ヨ と ・ ヨ と

The structure of $PHG(R_R^3)$ The affine planes $AHG(R_R^2)$

The structure of $PHG(R_R^3)$

Example ($R = \mathbb{Z}_4$)

The structure of $PHG(R_R^3)$ The affine planes $AHG(R_R^2)$

The structure of $AHG(R_R^2)$

$AHG(R_R^2)$

Points
$$\{(x, y) \mid x, y \in R\}$$

Lines $\{Y = aX + b \mid a, b \in R\}$
 $\{cY = X + b \mid c \in \operatorname{rad} R, b \in R\}$

Example $(R = \mathbb{Z}_4)$

The structure of $PHG(R_R^3)$ The affine planes $AHG(R_R^2)$

Slopes of lines in $AHG(R_R^2)$

Fact

Let $\Gamma = \{\gamma_0 = 0, \gamma_1 = 1, \gamma_2, \dots, \gamma_{q-1}\}, \gamma_i \not\equiv \gamma_j \mod \operatorname{rad} R$. Then each element *r* of the chain ring *R* can be represented uniquely in the form $r = a + \theta b$, where $\theta \in \operatorname{rad} R \setminus \{0\}$ and $a, b \in \Gamma$.

Definition

A line of type

Y = aX + b has slope a

cY = X + b has slope ∞_i , where $c = \gamma_i + \theta \gamma_i$

イロン 不同 とくほう イヨン

The structure of $PHG(R_R^3)$ The affine planes $AHG(R_R^2)$

Slopes in $AHG(R_R^2)$

Example ($R = \mathbb{Z}_4$)

Chain rings Projective Hjelmslev Planes over finite chain rings Blocking sets in PHG(R²_B) Blocking Sets of Rédei type in PHG(R²_B)

Definition Bounds of blocking sets in $PHG(R_R^3)$

Definition

Definition

The pointset $\mathfrak{B} \subseteq \mathcal{P}$ is called a *k*-blocking set if

•
$$|\mathfrak{B} \cap \mathcal{P}| = k$$
,

- $|\mathfrak{B} \cap \ell| \geq 1$ for any line $\ell \in \mathcal{L}$,
- there exists a line ℓ_0 with $|\mathfrak{B} \cap \ell_0| = 1$.

Definition

The blocking set \mathfrak{B} is called irreducible if $\mathfrak{B} \setminus P$ is not a blocking set for every point $P \in \mathfrak{B}$.

・ロト ・ ア・ ・ ヨト ・ ヨト

Definition Bounds of blocking sets in $PHG(R_R^3)$

Theorem

Let *R* be a finite chain ring with $|R| = q^2$, *R*/rad $R \cong \mathbb{F}_q$. The minimal size of a blocking set \mathfrak{B} in PHG(R_R^3) is q(q + 1) and then \mathfrak{B} is a line.

Theorem

There exists an irreducible blocking set in $PHG(R_R^3)$ of size $q^2 + q + 1$.

Example ($R = \mathbb{Z}_9$)

Definition Construction and examples

Blocking Sets of Rédei type in $PHG(R_R^3)$

Definition

Let *T* be a set of points in $AHG(R_R^2)$. We say that the infinite point (*a*) is determined by *T*, if there exist different points $P, Q \in T$, such that P, Q and (*a*) are collinear in $PHG(R_R^3)$.

I. Landjev, S. Boev Blocking Sets in Projective Hjelmslev Planes

<ロ> <問> <問> < 回> < 回> < □> < □> <

ъ

Definition Construction and examples

Blocking Sets of Rédei type in $PHG(R_B^3)$

Theorem

Assume T is a set of q^2 points in AHG(R_R^2), no two of which are neighbours. Denote by D the set of infinite points determined by T. If $|D| < q^2 + q$ then $B = T \cup D$ is an irreducible blocking set in PHG(R_R^3).

Definition

A blocking set of size $q^2 + m$ in PHG(R_R^3) is said to be of Rédei type if it has an *m*-secant. Such a line is called a Rédei line.

ヘロト ヘ戸ト ヘヨト ヘヨト

Chain rings Projective Hjelmslev Planes over finite chain rings Blocking sets in PHG(R²_B) Blocking Sets of Rédei type in PHG(R²_B)

Definition Construction and examples

Construction of T

If $f : \mathbb{R} \to \mathbb{R}$ then $T = \{(x, f(x)) \mid x \in \mathbb{R}\}.$

The directions determined by T

If P(x, f(x)) and Q(y, f(y)) are two different points in *T*, then $\{P, Q\}$ determine the following directions:

1) if
$$x - y \notin \operatorname{rad} R \to \operatorname{point} (a)$$
,
where $a = (f(x) - f(y))(x - y)^{-1}$

- 2) if $x y \in \operatorname{rad} R \setminus \{0\}$ and $f(x) f(y) \notin \operatorname{rad} R \to \operatorname{point} (\infty_i)$, where $(x - y)(f(x) - f(y))^{-1} = \theta \gamma_i, \gamma_i \in \Gamma$.
- 3) if $x y = \theta \alpha \in \operatorname{rad} R \setminus \{0\}$ and $f(x) f(y) = \theta \beta \in \operatorname{rad} R$,
 - a) $\beta \neq 0 \rightarrow$ class of all points (*c*) with $c \in \alpha \beta^{-1} + \text{rad } R$;
 - b) $\beta = 0 \rightarrow \text{class of all infinite points } (\infty_i) \text{ with } i = 0, \dots, q-1.$

ヘロア 人間 アメヨア 人口 ア

Chain rings Projective Hjelmslev Planes over finite chain rings Blocking sets in PHG(R²_B) Blocking Sets of Rédei type in PHG(R²_B)

Definition Construction and examples

Example

Let
$$f: \begin{cases} R \to R \\ a + \theta b \to b + \theta a \end{cases}$$

 $T = \{(x, f(x)) \mid x \in R\}$

and consider the set of points

イロン 不得 とくほ とくほとう

æ

 If R = R_σ = 𝔽_q ⊕ 𝔽_qt, for some σ ∈ Aut 𝔽_q, then T determines q + 1 infinite points.

• If
$$R = GR(q^2, p^2)$$
,
then *T* determines $q^2 - q + 2$ infinite points